Have summaries of our latest blogs delivered to your inbox, so you can stay up to date on the topics and current events that matter to your business.
Artificial Intelligence (AI) has already had a significant impact in academia and educational environments. It has introduced many advantages such as personalized learning experiences and chatbots to assist...
Accessibility in technology is essential and cannot be viewed as simply an additional feature . Imagine a visually impaired student struggling to navigate an online research database because the text ...
Each year on April 22, Earth Day inspires individuals, governments, and organizations to reflect on their role in protecting the planet. But for many mission-driven nonprofits, Earth Day is a call to action...
Generative AI’s potential for companies is well-known, but the technology can create new risks if it is not powered by original and trustworthy data sources. In this blog, we explore those risks;...
Generative AI is widely predicted to transform almost every industry and use case, and companies spent more than $20 billion on the technology last year. But it also exposes these firms to new risks if...
In today’s world, big data allows banks to reach new levels of innovation. Applying big data analytics to high-quality datasets guarantees the value and relevance of products clients are searching for. Nevertheless, numerous banks have yet to take full advantage of the potential offered by big data technologies such as Artificial Intelligence (AI) and Machine Learning (ML). Not seizing the opportunity of AI-enhanced innovations such as ongoing monitoring technologies can substantially damage a company’s financial performance and can even lead to reputational, regulatory, and strategic risks.
Like many industries in the global economy, the banking sector has been subject to sweeping changes to its business model in the past decades. Whereas customer relations used to happen directly at a branch, customer contact has increasingly moved online. This has not only changed the data and information banks have access to but also the experience of customers themselves, who are now often able to profit from a bank’s services all around the world and 24/7.
With the rise of this new and digital banking industry, data science has already shown its true value. Through big data technologies, banks have seized the opportunity to learn from their customers’ behavior and fully embrace the potential benefits of AI-enhanced technologies. Dutch multinational Rabobank, for example, started to embrace a data-driven approach in 2011. This has already led to more than 100 AI initiatives being successfully completed in fields such as customer experience and risk management.
Today, most banks have at least started to understand the potential benefit big data can bring to their business. As AI-enhanced technologies steadily develop, the use cases for big data application in the banking sector are growing by the day. For some use cases, big data has already proven to be indispensable for banks doing business today. These include:
The bottom line: While big data is finally gaining some traction in the banking industry, investing in these new technologies will only deliver value if organizations also have access to relevant datasets from both internal and external sources. With a compelling and growing field of use cases, AI is here to stay. Bearing the continuous rise of FinTech in mind, companies that fail to embrace AI-enhanced technologies today might find themselves at the losing end of their industry in a few years’ time. The only question that remains is: Is your company getting the most out of big data?